Flows and stochastic Taylor series in Itô calculus
نویسندگان
چکیده
منابع مشابه
External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملStein approximation for Itô and Skorohod integrals by Edgeworth type expansions
We derive Edgeworth-type expansions for Skorohod and Itô integrals with respect to Brownian motion, based on cumulant operators defined by the Malliavin calculus. As a consequence we obtain Stein approximation bounds for stochastic integrals, which apply to SDE solutions and to multiple stochastic integrals.
متن کاملConditional Stein approximation for Itô and Skorohod integrals
We derive conditional Edgeworth-type expansions for Skorohod and Itô integrals with respect to Brownian motion, based on cumulant operators defined by the Malliavin calculus. As a consequence we obtain conditional Stein approximation bounds for multiple stochastic integrals and quadratic Brownian functionals.
متن کاملApproximate solution of the stochastic Volterra integral equations via expansion method
In this paper, we present an efficient method for determining the solution of the stochastic second kind Volterra integral equations (SVIE) by using the Taylor expansion method. This method transforms the SVIE to a linear stochastic ordinary differential equation which needs specified boundary conditions. For determining boundary conditions, we use the integration technique. This technique give...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017